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Abstract. The effect of a weak Zeeman spin splitting on the spatial distribution and the energy
of an isolated skyrmion in a 2D electron gas under a strong magnetic field at filling factorν = 1
is studied within the framework of the Hartree–Fock approximation. Finite Zeeman splitting
introduces two different characteristic lengths into the problem, corresponding to the tail and
the core of the spin distribution. The non-linear differential equation for the macroscopic spin
density associated with the skyrmion is solved in the limit of very smallg-factor, for which the
tail of the skyrmion is much longer than its core radius. In this limit the Coulomb repulsion
energy of the skyrmion, which determines the core radius, does not affect the shape of the spin
distribution.

A two-dimensional electron gas (2DEG) in a strong magnetic field at filling factorν = 1 is
a uniquely suitable system for investigating the interplay between the spin and the orbital
degrees of freedom under the conditions of the quantum Hall effect (QHE). The magnetic-
field-induced resolution of the single-particle energy spectrum into a series of discrete,
but highly degenerate, spin-split Landau levels provides the energy gaps necessary for the
occurrence of the integer QHE. The gap is defined as the energy necessary to create a spin-
flipped electron and a hole, widely separated from each other in real space. In the limit
in which the effective Land́e g-factor is equal to zero, the system under consideration is
equivalent to an isotropic 2D ferromagnet, which can be described using a three-component
order parameter in a 2D coordinate space, i.e., by a model known as the non-linear O(3)
model [1]. O(3) symmetry is known to be associated with some non-trivial topological
invariants, which can lead to spontaneous creation of unusual topological point defects. At
a filling factor ν = 1, they have been shown to be skyrmions [2–6]. Such an isolated
charged skyrmion is characterized by its topological charge (winding number)Q, which is
equal to its electric charge [5].

The presence of large topological point defects [6] in the spin distribution of a 2D
electron gas under a strong magnetic field has been recently associated with the observation
in an optically pumped NMR experiment [7] of a strikingly large drop of the Knight shift
as a function of the filling factorν on either side ofν = 1.

Further experimental support for the existence of such topological defects was provided
recently in tilted-field magneto-transport experiments [8], as well as by interband optical
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transmission measurements [9], in which an anomalously large effective spin of the charge
excitations near filling factorν = 1, was observed. The variation of the spin activation gap
at ν = 1 with theg-factor aroundg = 0, which was investigated very recently in electrical
transport measurements under hydrostatic pressure [10], has been found to be in qualitative
agreement with the current theoretical spin-texture (skyrmion) model [3].

The understanding of these rapidly accumulating experimental data should be based on a
detailed knowledge of the energy spectrum and spatial spin distribution of skyrmions. While
the energy spectrum completely determines the thermodynamical properties, the knowledge
of the spatial spin structure is necessary for analysing the NMR-type experiments, which are
very sensitive to the local inhomogeneities of the magnetic moments, due to the microscopic
local origin of the hyperfine interaction.

It is now well known [3, 5] that the large Coulomb gap required for creating a widely
separated quasielectron–quasihole pair (a large spin exciton [11, 12]) is reduced by a factor
of 2 if the entire uniform spin distribution around the e–h pair created is twisted to form a
widely separated skyrmion–anti-skyrmion pair.

In the approximation in which fourth-order spatial derivatives are neglected in the
Hamiltonian, the total spin of a skyrmion withQ = 1 in the absence of the Zeeman energy
is indefinite. This follows from the fact that a macroscopic number of reversed spins around
the excitation core tend to reduce the exchange energy, while in this approximation the total
excitation energy is independent of the skyrmion size.

In realistic 2D electron systems, the Zeeman spin splitting, though much smaller than the
cyclotron energy, has a finite value. The Coulomb interaction acts to increase the skyrmion
size while the Zeeman splitting tends to squeeze it. The interplay between these two factors
determines the final distribution of spins in a skyrmion, and its characteristic length scales.

These length scales should play a significant role in cases in which the interactions
between skyrmions become important. Such situations (i.e. forν ≈ 1) have been recently
investigated numerically within the HF approximation [13], and according to this work the
ground state of the entire 2D electron gas may become unstable with respect to the formation
of a skyrme crystal.

In the present paper we study analytically the effect of a very weak Zeeman splitting
on the spatial distribution and the energy of an isolated skyrmion in 2D electron systems
at filling factor ν = 1. We show that skyrmion consists of a core, whose size is defined by
the interplay between the Zeeman and Coulomb energies, and an additional length scale,
lsk, which determines the tail of the spin distribution.

It is well known [1] that the non-linear O(3) model consists of a vector field,n(r),
with a unit norm, which is proportional to the macroscopic spin density of the 2D electron
gas. The corresponding equation for the vector fieldn(r) can be obtained by variation of
the HF energy functional with respect ton under the constraint|n|2 = 1. The resulting
equation is [5]

1n− n(n ·1n) = l−2
sk [(ẑ · n)n− ẑ] (1)

whereẑ is a unit vector along the magnetic field direction (thez-axis), and the characteristic
length scale

l−2
sk = 2

√
2

π
|g|(ãB/ l3H ). (2)

Hereg is the effectiveg-factor, which is different from the free-electrong-factor due
to the crystal field,lH = (ch̄/eH)1/2 is the magnetic length, and̃aB ≡ κh̄2/m0e

2 is the
effective Bohr radius (note thatm0 is the free-electron mass, andκ the dielectric constant).
In the following we use the symbolg to denote the modulus of the effectiveg-factor.
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The left-hand side of equation (1) has a standard form for the non-linear O(3) model,
and the right-hand side is connected to the additive Zeeman term

−(gµBH/4πl2H )
∫

d2r (ẑ · n) (3)

in the energy functional.
It is clear from equation (1) thatlsk is a characteristic length scale of a skyrmion in the

presence of a finite Zeeman splitting. This length is inversely proportional to the square
root of theg-factor and becomes infinitely large in the limit of vanishing Zeeman splitting.

Taking the vectorial product of equation (1) withn produces the equation

n×1n+ 1

l2sk
n× ẑ = 0. (4)

It is easy to show that the three scalar equations corresponding to equation (4) are not
linearly independent. Introducing the new complex variablen ≡ nx + iny , the two corres-
ponding independent equations take the form

n1nz − nz 1n+ n/l2sk = 0. (5)

We will seek solutions of this equation in the form

n(r) = n(m)(r)eimϕ

nz(r) = n(m)z (r)
(6)

with boundary conditions which guarantee that the local spin at the core of the excitation
(the origin) is completely reversed, i.e.,n(m)z (0) = −1 , while at infinite distance the spin
density is uniform and aligned with the external field, i.e.,n(m)z (∞) = 1. Note, however,
that the boundary condition at the origin ignores fluctuations of the spin distribution on a
microscopical length scale, which seem to be significant very close tor = 0 for non-zero
g-factor (see [14]).

These boundary conditions ensure that the angular momentum quantum numberm is
equal to the winding numberQ of the skyrmion:

Q = 1

4π

∫
d2r

(
n ·

[
∂n

∂x
× ∂n
∂y

])
= m[n(m)z (∞)− n(m)z (0)]/2. (7)

Sincen is a unit vector,|n|2 + n2
z = 1, we introduce the angular variableφ(r) such

that n(m)(r) = sinφ(r), n(m)z (r) = cosφ(r), and find the differential equation forφ:

d

dx
(x dφ/dx) = x sinφ +m2 sin 2φ/2x (8)

where the dimensionless variablex is given by x ≡ r/ lsk. The skyrmion boundary
conditions now take the following form:φ(0) = π andφ(∞) = 0.

The most interesting case corresponds tom = 1, in which the total number of reversed
spins around the excitation core is known to diverge logarithmically as the effectiveg-factor
tends to zero. The first term on the RHS of equation (8) describes finite Zeeman splitting.
When this term is neglected, equation (8) becomes autonomous in the variablet = ln x,
and the imposed boundary conditions lead to the following solution:

φ = 2 cot−1(x/x0) (9)

wherex0 is an arbitrary parameter, determining the length scaleR = x0lsk which describes
the size of the skyrmion core region.
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The corresponding vector field has the form

n = x̂
√

1− n2
z(r) cosϕ + ŷ

√
1− n2

z(r) sinϕ + ẑnz(r)
with ϕ being the angle in thex, y (coordinates) plane, andnz(r) = (x2 − x2

0)/(x
2 + x2

0).
For the solution in the form of equation (9), the first term on the RHS of equation (8) is
given by

x sinφ = 2x2x0/(x
2+ x2

0) (10)

and the second term by

sin 2φ/2x = 2x0(x
2− x2

0)/(x
2+ x2

0)
2. (11)

Let us restrict ourselves to the case in whichx0� 1. A simple estimate shows that in
the region wherex � 1 (i.e. for r far away from the exponential tail of the skyrmion; see
below), expression (11) is much larger than (10), except for a very narrow region around
x = x0. Thus, in that case we may neglect the first term on the RHS of equation (8) with
respect to the second term, and the corresponding solution is (9) (see, however, [14]).

Next, we may consider the regionx0� x � 1 (i.e. for r far outside the skyrmion core,
but deep inside the region defined bylsk), whereφ ≈ 2x0/x � 1. Throughout the entire
region x � x0 (whereφ � 1), we may restrict ourselves to an expansion of the RHS of
equation (8) in smallφ. To first order inφ we thus obtain

d

dx
(x dφ/dx) = (x + 1/x)φ (12)

which may be rewritten in the form

x2 d2φ/dx2+ x dφ/dx − (1+ x2)φ = 0. (13)

The general solution of this equation is

φ(x) = αI1(x)+ βK1(x) (14)

whereI1(x), K1(x) are modified Bessel functions andα andβ are arbitrary constants. The
boundary condition atr = ∞ determines the first constant to beα = 0, while the asymptotic
behaviour ofφ as derived from equation (9) isφ ∼ 2x0/x. On the other hand, forx � 1,
equation (14) withα = 0 implies thatφ ≈ β/x. Comparing these expressions we determine
thatβ = 2x0.

The corresponding distribution of spin polarization for a skyrmion has the form

nz(x) =
{
(x2− x2

0)/(x
2+ x2

0) for x � 1

1− 2x2
0[K1(x)]

2 for x � x0.

In the asymptotic region,x � 1,

nz(r) ≈ 1− πR
2

rlsk
exp(−2r/ lsk).

Using these expressions we can calculate now the total numberSz of reversed spins
associated with a skyrmion:

Sz = 1

4πl2H

∫
[1− nz(r)] d2r

which leads to the following expression:

Sz =
(
x0lsk

lH

)2

ln (2/x0
√

e) (15)
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where e is the natural logarithm base.
The Zeeman energy associated with the reversed spins is

1EZ = gµBHSz = 1

4

√
π

2

e2x2
0

κlH
ln (2/x0

√
e). (16)

The other correction to the skyrmion energy is associated with the non-uniformity of
the spin density appearing in the HF energy functional [5], i.e.,√

π

2

e2

κlH

1

32π

∫
(∇ · n)2 d2r. (17)

It is easy to show that∫
(∇ · n)2 d2r = 2π

∫ ∞
0

[(
dφ

dx

)2

+
(

sinφ

x

)2]
x dx = 8π(1+ x2

0/2)

and thus the corresponding expression for the energy (17) is

1

4

√
π

2

e2

κlH
(1+ x2

0/2).

Thus, the total correction to the energy of the skyrmion due to the effect of a non-zero
g-factor, which consists of both the Zeeman energy and the correction associated with the
non-uniform spin density, equation (17), can be written as

1E = x2
0

4

√
π

2

e2

κlH
ln (2/x0). (18)

Note thatR = x0lsk may be regarded as the radius of the skyrmion core region, which
is a very small fraction of the total skyrmion extension,lsk, provided thatx0� 1.

At this point we conclude that the total number of reversed spins within a single
skyrmion, as well as the total skyrmion energy (equations (15) and (18), respectively)
increase quadratically (we neglect a weak logarithmic dependence) with the radius of the
skyrmion core region. Under these circumstances it is impossible to avoid the collapse of
the skyrmion core.

This is, of course, not a physical result: it just reflects the absence of the Coulomb
self-energy repulsion associated with the skyrmion charge distribution in our analysis. This
interaction is of higher order in the gradient expansion than the terms considered in our
calculations so far. In the small-g-factor limit considered here, the direct Coulomb energy
term is the dominant one.

To calculate the direct Coulomb energy we use the expression

EC = 1

2κ

∫
δn(r1) δn(r2) dϕ1 dϕ2 V (|r1− r2|) (19)

where

δn(r) = 1

4π

dnz
dr

dr

andnz(r) ≡ (r2− R2)/(r2+ R2). Equation (19) can be presented in the following form:

EC = 1

4πκR2

∫ ∞
0
x3Ṽ

(
x

R

)
K2

1(x) dx (20)

whereK1(x) is modified Bessel function, and̃V (x) is the Fourier component of the effective
Coulomb potentialV (r). In the absence of screening,̃V (x) = 2πe2/x. The screening
changes the form of the Fourier componentṼ (x). The Fourier component of the effective
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Coulomb potentialV (r) = e2 exp(−r/r0)/r is equal toṼ (x) = 2πe2/

√
x2+ 1/r2

0. In the
case in which the asymptotic behaviour of the effective Coulomb potential is of dipolar
type, the Fourier component is̃V (x) = 2πe2/(x + 1/r0).

In the absence of screening, the Coulomb energy (20) is

EC = 3π2e2

26κR
. (21)

It is easy to show that for the case in which the core radiusR is much larger than the
characteristic screening lengthr0, the final expression for the Coulomb energy (20) does
not depend on the exact form of̃V (x), and is

EC = e2r0

3κR2
. (22)

To find the core radiusR, we have to minimize the total energy with respect toR. In
the absence of screening, the total energy is

EC +1E = e2

2κlH

[
3π2

25R
+ gãB

l2H

(
R

lH

)2

ln

(
2lsk
R

)]
. (23)

The resulting transcendental equation for the core radiusR can be approximately solved
to give (

R

lH

)3

= 9π2lH

25gãB

/
ln

(
0.4lH
gãB

)
. (24)

For the screened Coulomb potential, the core radiusR is(
R

lH

)4

= 8r0
3gãB

/
ln

(
3πl2H

4e2r0ãBg

)
. (25)

Thus, neglecting the fourth-order correction to the exchange energy in the gradient
expansion of the energy functional, our final result for the energy of a widely separated
skyrmion–anti-skyrmion pair in the absence of screening can be written in the form

E(g) = 1

2

√
π

2

e2

κlH

[
1+ 3π

8

(
18

π

)1/6

(g̃|ln (2.5g̃)|)1/3
]

(26)

whereg̃ ≡ g(ãB/lH ) determines the ratio of the Zeeman splitting to the Coulomb energy.
The corresponding expression for the screened Coulomb potential is

E(g) = 1

2

√
π

2

e2

κlH

[
1+ 4

(
r0g̃

3πlH
ln

(
3πlH

4r0g̃e2

))1/2
]
. (27)

In conclusion, we have considered the problem of skyrmions in 2D electron systems
under strong magnetic fields at filling factorν = 1 to determine the effect of a weak
Zeeman splitting on the spin distribution of an isolated charged skyrmion. We have found
that the Zeeman splitting introduces a new length scalelsk which determines the tail of the
spin distribution. On including the Coulomb self-energy repulsion of the skyrmion charge
distribution, a second characteristic length scale,R, for the skyrmion spin distribution is
determined by the finiteg-factor. This length scale corresponds to the skyrmion core region.
The results for the core radius of the skyrmion (24) and the corresponding expression for
the energy of the skyrmion–anti-skyrmion pair in the absence of screening (26) are similar
to ones obtained by Sondhiet al [3].
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(a)

(b)

Figure 1. Characteristic lengths (a) (in units of the magnetic length,lH ), and corrections to the
energies due to the effect of a non-zerog-factor (b) (in units of1

2

√
π/2e2/κlH ), as functions of

the normalized effectiveg-factor g̃ = gκaB/lH . lsk is the skyrmion extension;RC andEC are,
respectively, the radius of the skyrmion’s core and the energy of the skyrmion–anti-skyrmion
pair for a bare Coulomb potential.RSC andESC are the corresponding radii and energies in the
case of a screened Coulomb potential with several screening lengthsr0, marked in the figure in
units of the magnetic length.
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The explicit expression for the skyrmion spin density, obtained from equation (14), is
a new result, which is readily derived within our analytical approach. The derivation is
restricted to the limit of very smallg-factor, i.e., whenlsk is much larger than the core
radius,R. In this limit, the shape of the spin distribution within the core of the skyrmion is
not affected, neither by the Zeeman splitting nor by the Coulomb energy, and is the same
as that of an ideal skyrmion.

It should be stressed that the determination of the core radius,R, described in technical
terms above, has a clear physical meaning. It is the result of a competition between the
Zeeman energy (16), which grows quadratically withR, and so forces the skyrmion to
shrink, and the Coulomb self-energy repulsion of the skyrmion, which decreases withR,
and so forces it to inflate.

One should note, however, that although the Zeeman energy grows quadratically with
R, it is multiplied by a coefficient proportional to a very smallg-factor. The Coulomb
energy (in the absence of screening) decreases like 1/R, but with a coefficient which is
much larger than that of the Zeeman energy term. Therefore the Coulomb energy can be
compared with Zeeman energy only at very largeR.

The resulting radiusR, equation (24), grows weakly to infinity as theg-factor goes to
zero, thus reflecting the importance of the long-range Coulomb repulsion associated with
the skyrmion charge in the zero-g-factor limit. It should be noted that in the presence of
screening the Coulomb energy decreases more rapidly withR, which results in a smaller
value ofR at the sameg-factor. Accordingly, the correction to the energy of the skyrmion–
anti-skyrmion pair is smaller in the case of a screened Coulomb potential than in the case
of the unscreened potential.

Our findings are illustrated in figure 1, where realistic values of the relevant parameters
are used. In particular, the values of the normalized effectiveg-factor, g̃, considered
(i.e. |g̃| 6 0.002) are in the range studied experimentally by Maudeet al [10], where the
skyrmion size was estimated to approach 33lH in the g → 0 limit. It is clearly seen that
the effect of screening does not qualitatively change theg-dependence obtained for the
bare Coulomb interaction, which is significantly sharper than the experimentally measured
behaviour nearg = 0.

The smearing of the sharp behaviour nearg = 0 is most probably due to the effect
of long-range potential fluctuations in the heterostructure, neglected in our model, which
provide widely separated trapping sites for skyrmion–anti-skyrmion pairs with energies well
below their intrinsic Coulomb gap [15]. This effect seems also to explain the large difference
between the experimentally observed gap and the theoretically predicted one.
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